克服己身,叫身服我
ICP算法详解 ICP算法详解
ICP算法详解原论文浅析&补充:A Method for Registration of 3-D ShapesICP算法最早于1992年由论文《A Method for Registration of 3-D Shapes》提出,论
2024-06-28
CS231A Lecture 9:Fitting and Matching CS231A Lecture 9:Fitting and Matching
CS231A Lecture 9:Fitting and Matching lecture 9 也没什么内容,不过还是好好记一下,霍夫变换之前不太了解。。。 Reading: [HZ] Chapter: 4 “Estimation –
2022-11-23
CS231A Lecture 7:Multi-view geometry (2) CS231A Lecture 7:Multi-view geometry (2)
CS231A Lecture 7:Multi-view geometry (2) Reading: [HZ] Chapter 10 “3D reconstruction of cameras and structure” [HZ] Cha
2022-11-21
CS231A Lecture 7:Multi-view geometry (1) CS231A Lecture 7:Multi-view geometry (1)
CS231A Lecture 7:Multi-view geometry (1) Reading: [HZ] Chapter 10 “3D reconstruction of cameras and structure” [HZ] Cha
2022-11-12
CS231A Lecture 6:Stereo Systems CS231A Lecture 6:Stereo Systems
CS231A Lecture 6:Stereo Systems Reading: [HZ] Chapter: 9 “Epip. Geom. and the Fundam. Matrix Transf.” [HZ] Chapter: 18
2022-11-05
CS231A Lecture 5:Epipolar Geometry CS231A Lecture 5:Epipolar Geometry
CS231A Lecture 5:Epipolar Geometry Reading: [HZ] Chapter: 4 “Estimation – 2D perspective transformations [HZ] Chapter:
2022-11-01
CS231A Lecture 4:Single View Metrology CS231A Lecture 4:Single View Metrology
CS231A Lecture 4:Single View Metrology Reading: [HZ] Chapter 2 “Projective Geometry and Transformation in 2D” [HZ] Chapt
2022-10-28
CS231A Lecture 3:Camera Calibration CS231A Lecture 3:Camera Calibration
CS231A Lecture 3:Camera Calibration Reading: [FP] Chapter 1 “Geometric Camera Calibration” [HZ] Chapter 7 “Computation
2022-10-14
CS231A Lecture 2:Camera Models CS231A Lecture 2:Camera Models
CS231A Lecture 2: Camera Models Reading: [FP] Chapter 1, “Geometric Camera Models” [HZ] Chapter 6 “Camera Models”
2022-10-12
几何的隐式表示与显示表示 几何的隐式表示与显示表示
几何的隐式表示与显示表示Many Ways to Represent GeometryImplicit 隐式表示 algebraic surface level sets distance functions … Explicit 显示
2022-08-17
三维视觉的神经隐式表示 三维视觉的神经隐式表示
三维视觉的神经隐式表示Traditional 3D Reconstruction Pipeline classical multi-view reconstruction: input a set of images estimate c
2022-08-13
隐式神经表示 隐式神经表示
隐式神经表示什么是隐式神经表示?隐式神经表示(Implicit Neural Representations)是一种对各种信号进行参数化的新方法。 传统的信号表示通常是离散的——例如,图像是离散的像素网格,音频信号是离散的幅度样本,3D 形
2022-08-12
1 / 2