CS231A Lecture 9:Fitting and Matching
lecture 9 也没什么内容,不过还是好好记一下,霍夫变换之前不太了解。。。
Reading:
[HZ] Chapter: 4 “Estimation – 2D projective transformation”
[HZ] Chapter: 11 “Computation of the fundamental matrix F”
[FP] Chapter:10 “Grouping and model fitting”
Problem formulation
Fitting (拟合)


Least square methods
最小二乘法





CONCLUSION: Least square is not robust w.r.t. outliers
RANSAC
这里仅补充几个需要关注的地方。
RANSAC的两个基本假设

How many samples?


Conclusions

Hough transforms
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959




Conclusions

Generalized Hough transform
D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition 13(2), 1981

思考:
课件里面霍夫变换讲的并不清楚,这里补充一些内容:
Multi-model fitting
Fitting multiple models

Incremental line fitting
