CS231A Lecture 6:Stereo Systems


CS231A Lecture 6:Stereo Systems

Reading:

[HZ] Chapter: 9 “Epip. Geom. and the Fundam. Matrix Transf.”

[HZ] Chapter: 18 “N view computational methods”

[FP] Chapters: 7 “Stereopsis”

[FP] Chapters: 8 “Structure from Motion”

Rectification

Epipolar geometry

Epipolar Constraint

Parallel image planes

Essential matrix for parallel images

What are the directions of epipolar lines?

How are p and p’ related?

Rectification: making two images “parallel”

Rectification

Example

Why it is useful?

  • Epipolar constraint $\rightarrow v = v’$
  • New views can be synthesized by linear interpolation

Why are parallel images useful?

  • Makes triangulation easy

    这里有点类似双目相机的模型了。

  • Makes the correspondence problem easier

Correspondence problem

Correlation Methods

A Simple Idea

思考:

这里的问题是,只检查一个像素点,没有考虑到像素值相同的点可能比较多,很容易导致错误匹配。

Window-based correlation

思考:

这里的问题是,只计算两个矩阵的点乘,并且认为最大值是匹配的最好的。

这样处理很容易受到光照或者曝光的影响,如下所示。

Changes of brightness/exposure

Normalized cross-correlation

Effect of the window’s size

Issues

  • Fore shortening effect

    这个网站把Fore shortening effect介绍的非常清楚:Foreshortening – What It Means and How to Paint It

    从上图中也可以看出,左边相机拍摄的物体很长,而右边因为距离较远就缩短了。前面几种算法在这里容易出问题,他们都是在一条水平线上查找固定大小的window,但是利用图像金字塔应该可以处理这种问题。

  • Occlusions

    因为遮挡导致两个相机观察的内容不一样。

  • Base line trade-off

  • Homogeneous regions

  • Repetitive patterns

Correspondence problem is difficult!

Non-local constraints


文章作者: Immortalqx
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Immortalqx !
评论
  目录